Künstliche Intelligenz verbraucht viel Energie, kann aber auch zur Optimierung von Stromnetzen eingesetzt werden. Auf diesem Weg ließe sich zumindest ein Teil der Energie einsparen, meint zumindest Priya Donti, Professorin am MIT Department of Electrical Engineering and Computer Science.
Die Wissenschaftlerin untersucht Anwendungsmöglichkeiten von maschinellem Lernen für Stromnetze. Ein zentrales Ziel ist das Aufrechterhalten eines möglichst genauen Gleichgewichts zwischen der eingespeisten und der entnommenen Strommenge. Das stellt Netzbetreiber bisher vor große Herausforderungen, weil auf der Nachfrageseite Unsicherheiten bestehen und auf der Angebotsseite Schwankungen durch erneuerbare Energiequellen wie Wind und Sonne auftreten.
Präzisere Vorhersagen des Strombedarfs und der Verfügbarkeit
Künstliche Intelligenz kann laut Donti dazu beitragen, das Netz zu optimieren, indem sie historische Daten mit Echtzeitdaten kombiniert. Das ermöglicht präzisere Vorhersagen über die Verfügbarkeit erneuerbarer Energien zu einem bestimmten Zeitpunkt. Eine genauere Prognose erlaubt es den Betreibern, Ressourcen besser zu nutzen und das Netz effizienter zu verwalten.
Zudem stehen Betreiber von Stromnetzen aktuell vor komplexen Berechnungsproblemen, um Kosten zu senken und zu bestimmen, wann Generatoren laufen oder Batterien geladen werden sollen. Bisherige Verfahren nutzen oftmals ungenaue Näherungen, um diese Berechnungen in angemessener Zeit durchzuführen. KI-Modelle können hier schnellere und akkuratere Näherungen liefern, was ein reaktionsfähiges Management in Echtzeit ermöglicht.
Für die Planung zukünftiger Stromnetze und deren Errichtung bietet die Technologie ebenfalls Vorteile. Die Planung erfordert umfangreiche Simulationsmodelle, deren Ausführung durch KI effizienter gestaltet werden kann.
Darüber hinaus unterstützt KI die vorausschauende Wartung, indem sie anomales Verhalten im Netz erkennt, bevor es zu Ausfällen kommt. Auch die Materialforschung für leistungsfähigere Batterien kann durch KI-gestützte Experimente beschleunigt werden, was die Integration erneuerbarer Energien erleichtert.
Energieverbrauch unterscheidet sich je nach KI-Modell
In Bezug auf den Energieverbrauch der KI selbst unterscheidet Donti zwischen verschiedenen Modelltypen. Kleinere Modelle, die für spezifische Anwendungen trainiert sind, verbrauchen weniger Energie als große Allzweckmodelle. Wenn solche spezialisierten Modelle für Dekarbonisierungsstrategien eingesetzt werden, kann das Kosten-Nutzen-Verhältnis positiv ausfallen.
Zuverlässigkeit der Antworten ist ein kritischer Faktor
Ein kritischer Aspekt bei der Implementierung ist die Zuverlässigkeit. Während Fehler bei großen Sprachmodellen meist folgenlos bleiben, können Fehler bei der Netzsteuerung zu großflächigen Stromausfällen führen. Donti betont daher die Notwendigkeit, Algorithmen zu entwickeln, die physikalische Gesetzmäßigkeiten und Begrenzungen des Stromnetzes berücksichtigen.
Ihr Wartungsspezialist für alle großen Hardware Hersteller
Durch Jahrzehnte lange Erfahrung wissen wir worauf es bei der Wartung Ihrer Data Center Hardware ankommt. Profitieren Sie nicht nur von unserer Erfahrung, sondern auch von unseren ausgezeichneten Preisen. Holen Sie sich ein unverbindliches Angebot und vergleichen Sie selbst.
Weitere Artikel
US Tech Force soll KI in Regierungsbehörden voranbringen
In den USA wurde die Einrichtung der sogenannten Tech Force bekanntgegeben. Es handelt sich dabei um ein neues Regierungsprogramm,
Trump zerstört KI-Regulierung, Meta verlässt Open Source & OpenAI bringt GPT Image 1.5 raus
Über diese Episode Yusuf analysiert solo die wichtigsten KI- und Tech-Entwicklungen der Woche: Von Trumps radikaler KI-Deregulierung über
GPT Image 1.5 ist da: OpenAIs Antwort auf Google Nano Banana Pro
OpenAI hat mit einer neuen Version von ChatGPT Images gegenüber Google nachgelegt und liefert mit GPT Image 1.5 ein
Zum Inhalt springen



